Optimizing real-world factory flows using aggregated discrete event simulation modelling

Updated: Feb 21

Lidberg, S., Aslam, T., Pehrsson, L., & Ng, A. H. C. (2019). Optimizing real-world factory flows using aggregated discrete event simulation modelling: Creating decision-support through simulation-based optimization and knowledge-extraction. Flexible Services and Manufacturing Journal.


Abstract

Reacting quickly to changing market demands and new variants by improving and adapting industrial systems is an important business advantage. Changes to systems are costly; especially when those systems are already in place. Resources invested should be targeted so that the results of the improvements are maximized. One method allowing this is the combination of discrete event simulation, aggregated models, multi-objective optimization, and data-mining shown in this article. A real-world optimization case study of an industrial problem is conducted resulting in lowering the storage levels, reducing lead time, and lowering batch sizes, showing the potential of optimizing on the factory level. Access publication.


Initiators

VF-KDO is financed by: